Bacterial stimulation of the TLR-MyD88 pathway modulates the homeostatic expression of ileal Paneth cell α-defensins.
نویسندگان
چکیده
Paneth cell α-defensins are antimicrobial peptides involved in the control of the intestinal microbiota and immunological homeostasis. In mice, they are encoded by multiple, highly homologous genes (Defa). The transcriptional activity of ileal Defa genes was studied in response to pharmacological and genetic perturbations of the intestinal environment of C57BL/6 mice. Defa gene transcription was sensitive to oral antibiotic administration suggesting that commensal microbes regulate Defa expression. Ileal microbiota analysis showed that decreased transcription of Defa genes correlated with depletion of Lactobacillus. Defa expression was partially restored in vivo by lactobacillus administration to antibiotic-treated mice. Defa transcripts were less abundant in ex vivo, microbiota-free intestinal explants but recovered after explant exposure to UV-killed bacteria, Toll-like receptor (TLR)-2 or TLR4 agonists. Genetic deficiency of several TLRs or MyD88 led to dramatic drops in Defa transcription in vivo. These results show that Paneth cell Defa genes are regulated by commensal bacteria through TLR-MyD88 signaling and provide a further understanding of the dysregulation of intestinal homeostasis that occurs as a result of imbalances in the populations of commensal bacteria.
منابع مشابه
Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface.
The intestinal epithelium is in direct contact with a vast microbiota, yet little is known about how epithelial cells defend the host against the heavy bacterial load. To address this question we studied Paneth cells, a key small intestinal epithelial lineage. We found that Paneth cells directly sense enteric bacteria through cell-autonomous MyD88-dependent toll-like receptor (TLR) activation, ...
متن کاملEffect of A-769662, a direct AMPK activator, on Tlr-4 expression and activity in mice heart tissue
Objective(s): TLR-4 activates a number of inflammatory signaling pathways. Also, AMPK could be involved in anti-inflammatory signaling. The aim of this study was to identify whether stimulation of AMPK could inhibit LPS-induced Tlr-4 gene expression in mice hearts. Materials and methods: Heart AMPK activity and/or Tlr-4 expression was stimulated in different mice groups, using respectively IP i...
متن کاملDefensin deficiency, intestinal microbes, and the clinical phenotypes of Crohn's disease.
Crohn's disease is a chronic, inflammatory disease of the intestinal mucosa. Although intestinal bacteria are implicated in disease pathogenesis, the etiology is still unclear. The main location of disease is the small intestine (ileum) and the colon. Ileal disease has been linked to a mutation in the NOD2 gene. Defensins are antimicrobial peptides and in the ileum, are mainly expressed in Pane...
متن کاملEpithelial Antimicrobial Peptide Expression TRIF Signaling Drives Homeostatic Intestinal
Recent results indicate a significant contribution of innate immune signaling to maintain mucosal homeostasis, but the precise underlying signal transduction pathways are ill-defined. By comparative analysis of intestinal epithelial cells isolated from conventionally raised and germ-free mice, as well as animals deficient in the adaptor molecules MyD88 and TRIF, the TLR3 and TLR4, as well as th...
متن کاملINFLAMMATORY BOWEL DISEASE NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal a-defensin expression
Background: Mutations in NOD2, a putative intracellular receptor for bacterial peptidoglycans, are associated with a subset of Crohn’s disease but the molecular mechanism linking this protein with the disease pathogenesis remains unclear. Human a defensins (HD-5 and HD-6) are antibiotic effector molecules predominantly expressed in Paneth cells of the ileum. Paneth cells also express NOD2. To a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of innate immunity
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2013